

Abstracts

A Frequency-Dependent Finite-Difference Time-Domain Formulation for General Dispersive Media

O.P. Gandhi, B.-Q. Gao and J.-Y. Chen. "A Frequency-Dependent Finite-Difference Time-Domain Formulation for General Dispersive Media." 1993 Transactions on Microwave Theory and Techniques 41.4 (Apr. 1993 [T-MTT]): 658-665.

A weakness of the finite-difference time-domain (FDTD) method is that dispersion of the dielectric properties of the scattering/absorbing body is often ignored and frequency-independent properties are generally taken. While this is not a disadvantage for CW or narrow-band irradiation, the results thus obtained may be highly erroneous for short pulses where ultrawide bandwidths are involved. In some recent publications, procedures based on a convolution integral describing $D(t)$ in terms of $E(t)$ are given for media for which the complex permittivity $\epsilon^*(\omega)$ may be described by a single-order Debye relaxation equation or a modified version thereof. Procedures are, however, needed for general dispersive media for which $\epsilon^*(\omega)$ and $\mu^*(\omega)$ may be expressible in terms of rational functions, or for human tissues where multiterm Debye relaxation equations must generally be used. We describe a new differential equation approach, which can be used for general dispersive media. In this method $D(t)$ is expressed in terms of $E(t)$ by means of a differential equation involving D , E , and their time derivatives. The method is illustrated by means of one- and three-dimensional examples of media for which $\epsilon^*(\omega)$ is given by a multiterm Debye equation, and for an approximate two-thirds muscle-equivalent model of the human body.

[Return to main document.](#)

Click on title for a complete paper.